When a good loop isn’t enough

A nice and tight loop is normally considered the tell-tale sign of good casting control. However, in spey casting that is only part of the story.
Let’s take a look at the following example:

I was satisfied with the loops I was seeing, but subsequent analysis of the video shown a gross error that normally happens inadvertently: a slipping anchor.
Why is this bad?
– It detracts energy from the forward cast —but that is a problem only if your aim is maximum distance, not with an 18 m cast like this one.
– It may send the fly against the vegetation behind you and hook a branch, ruining the cast. It is a nuisance but without further consequences.
– If you are fishing a vegetation-free bank with a shingle-beach behind you things could get worse if you don’t care about your slipping anchor: your fly hits a stone and the hook looses its point… now you are subject to Murphy’s law.

Now the important thing is how to avoid it in practice. The reason for that failed anchor in the video above is a too inclined-up sweep; that leads to a too high apex of the V-loop, which amounts to a big angle between the water surface and the fly leg. The usual result is a fly traveling backward instead of rising up from the water to start its forward trip.

Sweep lower and back and, if the anchor is properly placed and long enough, it will work fine.

As an example let’s see a couple of casts at the same distance and with the same gear, but with a proper anchoring angle:

¡Agarra, ancla, agarra!

Si algo característico hay en el lanzado spey eso es el ancla; esa corta porción de línea que permaneciendo en contacto con el agua junto con el bajo y la mosca, permite la formación del bucle en D, justo en el instante previo al inicio del lance que va a presentar la mosca.

En cualquiera de los lances spey es recomendable evitar que el ancla se despegue del agua intempestivamente —lo que se conoce como desanclado. El ancla debe levantarse limpiamente del agua a medida que el bucle frontal avanza hacia el objetivo, idealmente debería hacerlo sin desplazarse hacia atrás. Los efectos de ese desanclado son negativos así que mejor cuidarse de él.

¿Se puede conseguir un buen lance a pesar de desanclar? Por supuesto que sí, aunque hay circunstancias —por ejemplo cuando queremos llegar lejos— en las que la diferencia entre un ancla que aguanta y una que no es notable; pero por otra parte, aunque el lance salga, el desanclado lleva aparejados otros problemas que conviene tener en cuenta.

Veamos los dos tipos de desanclado.

El desanclado que se produce mientras el pescador realiza el lance delantero. El ancla patina hacia atrás, generalmente al final del golpe de lance o, incluso, cuando éste ya ha terminado. Es lo que yo llamo ancla patinada. Un ejemplo:

  • El ancla patinada siempre desperdicia energía: nosotros queremos que la mosca despegue del agua y se desplace hacia adelante, hacia el objetivo; sin embargo con el desanclado la mosca se desplaza hacia atrás, y entonces:
    Va en sentido opuesto al que buscamos
  • No se mueve sola, alguien debe moverla, el pescador, que desperdicia parte de su energía en desplazar la mosca —y todo el ramal inferior del bucle en D— hacia donde no debe.
  • Cuando la mosca endereza su rumbo y comienza a dirigirse hacia su objetivo, está más lejos de éste que en el caso de un ancla que aguante: hace falta más energía para mandarla a su destino.

Aquí se explica todo esto:

El desanclado que se produce durante el barrido para formar el bucle en D. Es lo que yo llamo ancla volada, para diferenciarla de la patinada.
En este caso no se desperdicia energía en el lance delantero, incluso éste resulta más eficiente pues, a diferencia de un spey, ahora tenemos un lance oval en el que estamos impulsando la totalidad de la línea hacia adelante, no solo la parte de la línea que conforma el ramal ramal superior de la D.

Pero, si un ancla volada puede resultar en un lance más eficiente, ¿por qué evitarla? Por dos motivos principales:

  • Si estamos pescando con un espacio limitado por detrás un ancla volada puede mandar la mosca a las ramas que se encuentren a nuestra espalda.
  • Si, en cambio, el espacio que tenemos detrás es amplio y limpio —por ejemplo un pedrero— corremos el riesgo de que la mosca toque inadvertidamente en una piedra y el anzuelo pierda su punta. Ocurre, y cuando lo hace no nos damos cuenta.

El siguiente vídeo muestra anclas patinadas:

A todos los pescadores les patina el ancla alguna vez, no es ninguna tragedia, pero en mi caso tengo la sensación de que esforzarme en hacerlo perfecto es la única manera de que me salga medianamente bien.

Anchor Loading the Rod?

 

OLYMPUS DIGITAL CAMERA

A fishing roll cast: look at the lack of tension in the fly leg of the D-loop

I was trying hard to follow exactly what I had been reading on all those books. The roll cast was an easy one —authors said— in fact easier than an overhead cast because you get rid of the backcast part. However, when practicing it my results were awful, to say the least.

A guy waving a rod in the middle of an urban park is like a priest on top of a mound of lime. Fortunately, the guy coming to me this time was a fly fisher.
—Are you trying a roll cast? It is easy, I use it everyday on the river.
—Show me, please!
… and the cast ended in a heap of line.
—I don’t know what happens, maybe it is your gear —he said.

Looking for an answer to that frustration; what I found was mostly something along these lines:
It’s best to practice this cast on water because the water creates the friction and drag necessary for a good roll cast. The friction of the water on the line in the roll cast helps load, (bend) the rod.

Yes! That corroborated what I had been studying so far! Rod and line were the equivalent of bow and arrow: the rod gets bent —loaded— and it propels the line when unloading.
This approach leads to a widespread conclusion: any action or thing contributing to rod loading —sometimes only in appearance— is good by itself, while most of the problems with failed casts have their source in an “insufficiently loaded” rod.
But this isn’t how a fly rod actually works —in fact this view is totally misleading when trying to explain a good bunch of casting phenomena— however, since the bow/arrow model is still the prevalent view in the casting scene, it is worth examining rod load in spey casting. So the present article comes as a complement of this one about bend when the anchor settles, and this other one on the effects of circling-up after the sweep.

The following video is the second most viewed one of my Vimeo channel, and probably one of the less well understood. Let’s analyze what that experiment shows. What I am using to make some roll casts is an Echo Micro Practice Rod, whose “line” consists of braided cotton cord with a short piece of red wool as the “leader”. A tiled floor makes for the perfect scenario for the experiment. Since when casting on water the anchor is said to be the main actor providing rod load, what happens to rod bend when we have no anchor at all?:

 

Another roll cast from a different point of view:

What is happening on those clips? We have a very slippery floor that allows the line lying on it to slip freely, with almost no resistance due to the very low friction provided by the polished surface. As the current view on anchor and rod load states, the water “grip” on the anchor provides the resistance against the rod is moving, putting a bend on it. The rod pulls on the anchor and the anchor reacts and pulls on the rod bending it. But is that what actually happens?

Let’s address the main factor to understand this issue: during the casting stroke tension on the fly leg of the D-loop is very very small, that is, the force exerted by the moving D-loop on the anchor is very small, so small in fact that the anchor on a tiled floor remains in place during the whole casting stroke. It is important to notice that the line starts slipping backward only when the casting stroke is finished; the turning D-loop is able of making the anchor slip only when it is very close to the line end, when its small force is exerted on a shorter piece of cord, whose small mass opposes much less resistance to the pulling.

A fly rod bends due to action/reaction: we apply force to rod and line and these react due to their inertia —a body that isn’t in motion wants to remain still and opposes itself to any force trying to put it in motion; inertia we call it—, trying to oppose that force. Since the rod is flexible it bends, gets “loaded”. But, as those videos above show, if the fly rod pulling on the rod leg of the D-loop is unable of moving that super slippery anchor it is because it isn’t actually pulling on it, and if the rod doesn’t pull on the anchor the anchor doesn’t pull on the rod!; no pulling, no load!

And what about the bend in the rod on those slippy anchor casts? As we can see the rod gets loaded even without the supposed effect of the anchor. If it isn’t the anchor, what is it that provides that load? Just action/reaction, as explained above. When the stroke ends the rod has been pulling only on the piece of line that forms the rod leg of the D-loop, but not on the rest, that is, not on the piece of line lying on the floor. So that rod bend comes from the reaction of the rod itself and from the reaction of the rod leg of the D-loop only. That length of line that the caster has impulsed during his casting stroke is what I call live line, as opposed to the dead line which forms the fly leg of the D-loop; this dead line contributes nothing to our cast, it is just a passenger, a payload. But this is an interesting aspect that will be analyzed in another article.

OK! —you say —but that is just an experiment, what happens in a real cast?

As shown on this clip, on water we face the same phenomenon: the anchor slips after the casting stroke is finished:

The following picture was shot in a real fishing situation. It shows that even with a water anchor, tension in the fly leg of the D-loop is so low that that piece of line isn’t tight at all:

OLYMPUS DIGITAL CAMERA

Another clip showing how small is the force exerted by the rod leg on the fly leg:

So, if the anchor’s function isn’t rod loading, what is its role? The following video addresses this. Take notice of the instant in which the anchor starts sliding backward and its effect on the front loop speed and shape:

Conclusion? Don’t think of rod load, just concentrate in as long a live line as possible, with it, V-loop and anchor pointing in the direction of the target. And consider rod load just as a by-product of a well executed casting stroke.

Sweep, Loading… Unloading II

OLYMPUS DIGITAL CAMERA

 

In the first article of this series we studied how the setting of a V-loop doesn’t put any load in the rod. The momentum of the line travelling backward is transferred to the water, without affecting the rod tip. In many spey casting technical works we find another purported source for that mythical rod pre-loading: the rod motion from the tilted sideways position at the end of the sweep into the more vertical position suitable for starting the forward cast, a maneouver also known as circling-up. A quote from the internet about this circling up and its consequences puts things in perspective:

It is intended to transfer the rodloading created during the Sweep, on through to the Forward Cast, in a continuous, uninterrupted fashion… no stopping of the rod, no load-unload-load action… thereby maintaining continuous loading of the rod.

As H.G. Wells wrote: It sounds plausible enough tonight, but wait until tomorrow.

Will tomorrow be able of invalidating plain logic?

As we have seen in the first part of this study rod bend comes from a force. After the sweep is finished the line moves on its own backward; the rod pulls on the line making it turn and a loop is formed.

– Well, for that to happen the rod has to exert a force on the line, and the line exerts the same force -action/reaction- on the rod in the opposite direction, right?

– Yes, of course.

– So the rod gets loaded, right?

– No, slo-mo says it doesn’t and so does physics.

Let’s take a look to the equation for force:

F = m.a

What this equation states is that force is directly proportional to mass (weight in layman’s terms) and acceleration (change in velocity). The bigger the mass the bigger the force needed to accelerate it; the bigger the acceleration the bigger the force applied. So for a force to be increased we could increase m, a or both.

So what happens to the mass of the line and its acceleration -and consequently to force and then rod load- in those two phases of spey casting known as sweep and circling-up?

During the sweep we are applying force to the whole length of line at play in order to form a loop; during circling-up we exert force only on the short piece of line which is actually turning around in the loop front, the part of the line changing direction but not on the rest of it. During the sweep we are pulling on a much bigger mass.

What about acceleration? During the sweep we have to accelerate the line significantly to form a loop; when circling-up the rod is not accelerating anymore, for the caster moves it to the key position leisurely, without the intention of applying any significant force. During circling-up we are pulling with much less acceleration.

The logical conclusion? The force bending the rod on the sweep is comparatively big and decreases hugely when the sweep ends. In fact the force exerted on the rod by the line during circling-up is so low that the amount of bend left is irrelevant. Some video to clarify things:

 

The following pictures correspond to three frames taken from the video above: they show both the difference in the mass the rod is pulling on, and the difference in rod bend between the sweep and the circling up.

whole-line

The sweep applies significant force to the whole line. The rod is bent.

rsp

End of the sweep. No force applied to the rod or the line. Note how the line has lost tension and the rod is straight.

loop-front

An instant during circling-up. The rod is pulling only on that piece of line inside the red circumference, so there is no appreciable bend in it.

 

 

More video:

 

Is it that important to be aware of these intricacies? It is, in my opinion, if only for one reason: if you train or fish focusing on getting some impossible pre-load, you won’t be paying attention to the things actually defining spey casting efficency, namely: minimum anchor, maximum live line in the V-loop, all that aligned with the target and as close to the forward rod tip trajectory as possible.

Sweep, Loading… Unloading I

OLYMPUS DIGITAL CAMERA

Always shrouded in the mist of mystery, when popular casting mechanics focuses on spey issues it seems to enter the realms of magic.
It doesn’t help that the various styles of spey casting seem to compete in presenting their respective approaches as if they were different techniques, instead of just adaptions to some particular conditions.
Fortunately spey is spey, and physics is physics, and the latter governs the phenomena involved in the art of throwing a line with a pole in exactly the same way, whatever the brand, length or taper of your rod and line, and the waters and fish you are after, be it in Scandinavia or in the Pacific North West.

One concept is common to some of those schools, though: that efficiency in spey casting lies, in good part, in some kind of pre-load of the rod prior to the start of the forward cast.

An excerpt from a highly-regarded book will clarify this point:

With the fly/leader anchored to the water surface, the momentum of the forming “V” loop reloads the rod 180 degrees as a reaction.

So when the anchor touches down and the V-loop forms the rod gets automatically loaded. Apparently as the line is traveling backwards it will pull on the rod tip forcing it to bend. Pure logic, isn’t it?

The problem is that physics has the annoying habit of defying what at first sight looks like common sense. The good news is that high speed cameras, and a basic knowledge of Newton laws, help to open a more clear window into reality.
So in order to shed some light on this issue I did set up the following scenario:

  • Scott STS 7’6”#3 rod rigged with a #8 Barrio SLX line (equivalent to an AFFTA #10 one).
  • Line configuration in front of the caster similar to a perry poke with my right foot stepping on the line tip.
  • A sweep to set the V-loop.
  • Without a pause the rod is lifted up to the starting position for the forward cast in a continuous motion, and is stopped there.

Here you are:

An analysis of the casting sequence shown above is in order:

I start the sweep by accelerating the rod butt; I finish the sweep by decelerating the rod butt; as soon as the rod butt speed decreases, rod unloading starts.
Take notice that when I reposition the rod for the forward cast there is no load left in the rod.
After that the V-loop is fully formed and the line gets tight. That tension in the line loads the rod, right? Well, no, as shown by the video above the tight V-loop against the rod doesn’t put a bend on it.
Does it sound strange? Well, in fact basic physics tells us that it couldn’t be any other way. To understand this we have to look at the reason for rod bending, that is, force.

The sweep applies force to the rod, and the rod applies force to the line. Newton taught us that forces always come in pairs, it is what we know as action/reaction. So the rod applies a force to the line and the line reacts applying the same force to the rod in the opposite direction. Flexibility makes the rest.

The caster finishes the sweep by ceasing applying force; no force, no bend; the rod unloads itself. It is capital to take into account that the rod doesn’t need to be completely still to unload, that process happens before: as soon as the caster decreases rod butt velocity the rod unloads. Motion doesn’t necessarily mean force, only accelerated motion does mean force; a decreasing rod butt velocity means that it is not being accelerated anymore, and when acceleration disappears force disappears as well. In summary, a complete stop is not needed for the rod to unload.
At some point in the unbending process the line overtakes the rod tip, and the rod tip pulls on the line forcing it to turn around: a loop is born.

Back to the line in course of crashing against the water: it gets anchored and gets stopped.

What has stopped it? The water (in the case of the video above my foot).

Where does the fly leg momentum go? Obviously to the water, so that force of the crashing anchor is applied to the water, not to the rod!

An old slow motion video showing rod load when anchoring on water:

And another one:

But don’t take my word for it. A very easy experiment for you:

Rig a rod with line and leader. Lay the line in a perry poke configuration like that in the video. Take the end of the leader between your fingers. Make a sweep. Do you feel anything in your rod hand? Do you see any sudden loading? Where do you feel the tug of the line when it gets tight?

El Rodado Dinámico

En un artículo previo veíamos que el rodado dinámico es la evolución lógica del lance rodado convencional, la búsqueda de la máxima eficiencia. Recordemos esquemáticamente esa ineficiencia del lance rodado en contraposición al rodado dinámico.

Lance Rodado

  • Su ancla excesivamente larga nos roba mucha energía, desperdiciada en despegarla del agua.
  • La longitud de línea que realmente impulsamos hacia adelante con el golpe de lanzado es muy escasa, la mayor parte de la línea es un pasajero.

Rodado Dinámico

  • Ancla mucho más corta, solo la necesaria.
  • Mayor longitud de línea viva y, por tanto, menor de línea muerta.
  • Es el alma de todos los lances spey.

Ejecución de un Rodado Dinámico

  • Levantado: es una maniobra que lo único que pretende es liberar del agua la mayor longitud de línea posible. Cuanta más línea tengamos en el aire antes de comenzar la siguiente fase mejor, más limpio y fácil será el resto del proceso.
  • Barrido: se trata de un simple lance trasero al estilo belga (también conocido como lance oval) que se ejecuta con relativa poca fuerza para que el bucle no llegue a estirarse del todo, de forma que la punta de la línea caiga en el punto de anclaje.
  • Deriva: tras terminar el barrido, y mientras el bucle trasero va viajando por el aire, recolocamos la caña en un plano más cercano a la vertical preparándonos para el lance delantero.
  • Anclado: mientras derivamos se produce el anclado, anclado que coincide en el tiempo con la formación del bucle en D propiamente dicho.
  • Lance delantero: estaba a punto de escribir que el lance delantero se realiza igual que en un rodado convencional. No es cierto: en un dinámico el lance de presentación es mucho más relajado, controlado y elegante

Dicen que una imagen vale más que mil palabras, yo creo que en realidad las unas  complementan a las otras

 

Creo que aquí queda más clara la diferenciación entre levantado y barrido

Introducción al lanzado spey

 

 

El spey es una técnica de lanzado nacida como una evolución del lance rodado convencional. Aunque en principio estaba enfocada a la pesca del salmón no está en absoluto limitada a ese uso. El spey es un recurso más para pescar: con dos manos, con una mano, con moscas para salmón, para trucha, tímalo, streamers, ninfas… en casos puntuales incluso moscas secas.
No obstante es cierto que donde mejor se pueden apreciar las ventajas del spey es en la pesca del salmón. La más obvia de esas ventajas es que permite presentar la mosca, incluso a largas distancias, sin apenas espacio disponible detrás de nosotros.
Sin embargo, para la pesca al swing su uso tiene ventajas en comparación a un lanzado convencional, aun en espacios abiertos:

  • Mayor seguridad en el manejo de la mosca, especialmente si se trata de moscas grandes y pesadas: un spey bien ejecutado mantiene la mosca siempre por delante del pescador, por lo que las posibilidades de que nos golpee o se nos clave son nulas.
  • Mayor control en el manejo de moscas pesadas: no hay lances falsos con moscas que, debido a su masa, tienen vida propia.
  • Mucho mayor número de presentaciones de la mosca al final de la jornada: en la técnica convencional se requieren varios lances falsos para cambiar de dirección y volver a presentar, con el spey basta con un par de maniobras. Especialmente con el salmón esto no es baladí: un pez que se ha mostrado indiferente a lo largo de mil presentaciones de la mosca puede cogerla a la 1.001.
  • Menos cansancio: menos movimientos con la caña a pesar de que presentamos la mosca más veces.
  • Estética! No olvidemos que pescamos a mosca por algo más que por su eficacia.

 

Principios Básicos

Podríamos decir que el spey es la evolución natural del lance rodado, el perfeccionamiento necesario para conseguir la máxima eficiencia.

Pero ¿por qué es ineficiente un lance rodado?

  • Tras terminar la deriva necesitamos volver a presentar la mosca aguas arriba de su actual posición. Ese cambio de dirección no se lleva nada bien con los rodados convencionales.
  • La relativamente larga longitud de línea que se encuentra sobre el agua al iniciar el lance delantero nos roba mucha energía, desperdiciada en despegar esa línea del agua.
  • En un rodado la cantidad de línea que realmente impulsamos hacia adelante con el golpe de lanzado es muy corta, la mayor parte de la línea es un pasajero. Un simple experimento ilustrará mejor lo que quiero decir: unimos una pelota de tenis y una de ping-pong con un trozo de backing de tres metros de longitud. Dejamos la pelota de ping-pong en el suelo y arrojamos la de tenis hacia adelante. El conjunto vuela sin problemas. Tratemos de hacer lo mismo pero esta vez arrojando la pelota de ping-pong. ¿Qué pasará?

Para paliar todo esto empleamos lo que se ha dado en llamar rodado dinámico (jump roll, switch cast…). Con el rodado dinámico conseguimos una mínima cantidad de línea posada sobre el agua (que costará poco despegar), y una longitud de línea mucho mayor para impulsar hacia adelante (estaremos lanzando la pelota de tenis en vez de la de ping-pong). Este rodado dinámico es el alma de todo lance spey. La configuración que adopta la línea antes de iniciar el lance de presentación en un rodado dinámico, es el fin último de las diferentes maniobras previas propias de cada lance spey. Lo que diferencia a cada lance son, precisamente, esas maniobras previas, que no son sino adaptaciones a las diferentes circunstancias.

Unos pocos términos elementales:

  • Bucle en D (o en V): la forma que adopta la línea en un lance spey justo antes de iniciar el lance delantero para presentar la mosca. Se llama así porque la recta que forma la caña y la curvatura de la línea doblada sobre sí misma, vistas lateralmente, se asemejan a una D mayúscula.
  • Ancla: la porción de línea (más el bajo) que quedan en contacto con el agua una vez formado el bucle en D. Su función es impedir que toda la línea se deslice hacia atrás. Este “patinazo” del ancla tiene consecuencias poco recomendables: mandar la mosca a la vegetación a nuestra espalda; golpear la mosca contra las piedras de la orilla con el consiguiente riesgo para la integridad del anzuelo; en cualquier caso, desperdicia la energía destinada al lance delantero.
  • Punto de anclaje: La zona de la superficie del agua donde deberemos hacer posar la punta de la línea para formar el ancla.
  • Línea viva: el tramo de línea situado en la parte superior del bucle en D. Es la parte que impulsamos durante el golpe de lanzado delantero.
  • Línea muerta: el ancla más el tramo de línea situado en la parte inferior del bucle en D. Es un mero pasajero que se aprovecha del impulso que hemos ejercido en la línea viva, restándole energía.
  • Carga de la caña: cuando aplicamos fuerza para lanzar la caña se dobla; es algo automático, sin más historias. Cuanto menos te centres en la sobrevalorada “carga” más podrás concentrarte en los aspectos clave. Y ya que estamos en ello:
  • Claves:
    • Situar el punto de anclaje en el lugar adecuado. Este punto es relativamente variable dependiendo del escenario. Una buena referencia: apunta con los pies al lugar donde quieres presentar la mosca; pon la caña a 90 grados de esa línea imaginaria, a la izquierda o a la derecha, y toca el agua con la puntera, ése es el punto de anclaje.
    • Ancla la cantidad de línea justa, ni mucha ni poca. Si es mucha, el hecho de despegarla del agua restará velocidad al lance; si es poca patinará, con las consecuencias ya mencionadas.
    • Asegúrate de que el ancla está lo más recta posible y mirando al objetivo.
    • El bucle en D deberá estar también, en la medida de lo posible, alineado con el ancla y con el objetivo.
    • Relájate: no es cuestión de fuerza sino de técnica; cuando te salga el primer lance decente lo comprenderás de golpe.